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A group classification is presented and the complete set of invariant solutions is found for the equations of
adiabatic motion of a medium in relativistic hydrodynamics.

1. The group properties of the differential equations of hydrodynamics were studied in {1-3]; specifically, a
group classification was made of the equations of adiabatic flow of a medium in the nonrelativistic case. It isof interest
to apply the technique developed to the equations of relativistic hydrodynamics, since in view of their covariance the
group properties of the latter must be different than in the nonrelativistic case. In the present paper we examine the
group properties of the equations of adiabatic motion of a medium, since to the best of our knowledge their sclutions
have not yet been found.

In the general case the equations of adiabatic motion of a medium in relativistic hydrodynamics have the form
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Here W ig the enthalpy per unit volume of the medium, p is pressure, & = e(p,n) is the internal energy density,
n is the particle number density per unit volume, ¢ is the entropy per particle. The basic system (S) consists,
respectively, of the equations of motion, particle number conservation, and entropy.

2. Let us study the group properties of (1.1). In accordance with the general rules [1-3] we must find the system
of defining equations of the Lie algebra of the basic group G of the system given by (8).

The system of defining equations is found fromthe condition of invariance of the system (S) relative to the operator
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Here we examine the case of one-dimensional motion and for symmetry of the form of the equations we get t =
=xy(c = 1).

In simplified form the system of defining equations has the form
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The following equation can be derived as a corollary from the system of defining equations (2.1):

from which it follows that two cases are possible, either A =W or
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In the first case the basic system ac ‘ts an infinite group, since & are expressed through arbitrary wave
functions. In the second case %% are independent of x and, consequently, 7, @2 depends on x to the first power. In
the following we assume that A # W, i.e., we examine the second case.

For the group classification of the system (S) we must find the specialization of the system as a consequence of A
and €. The functions A and € obey the system of equations

L x  r,
where
T "’*’) zz]
i 8 B s

In particular, it can be shown that (2.2) admits a solution of the form
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For bi=17v, ai=1/(p —1), az== al=1, ag= 0, a' = m,, where mg is the rest mass of the particles and y is the
adiabatic exponent, we have the equation of state of the relativistic ideal gas

s=1__£1+nmo, A=1p. (2.3)
For the ultrarelativistic case
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This corresponds to high densities of the pressure and internal energy.

The general solution of (2.1) for the equation of state (2.3) has the form
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Hence we find the basis operators of the Lie algebra for the basic group G
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As is known, to find essentially different particular solutions it is necessary to construct an optimum system of
single parameter subgroups of the group G of the basic system (S}.

The optimum system is constructed by using the internal automorphisms of the group G and has the following
form:

Hi= X, — X;, Hy=X;, H,= Xp — X4 - X;,
Hy= X1, H;= X3+ X; He= X+ aX,, (2.8)
Hy=X; 4+ Xs, Hy== X1+ X5+ aX,, (@==1).

The eight operators (2.6) lead to invariant solutions of rank one.

Before turning to the study of these invariant solutions, we must emphasize that an exact analytic expression
for the solutions is possible only in the ultrarelativistic case. In the relativistic case the solution is found by
successive approximations, by expanding in powers of the constant m;. We shall make the analysis of the solutions
only for the ultrarelativistic case.

Subgroup Hy. The operator invariants are

Ii= A= 23 + 2o, L=VM=w, Iy=PMN=1p, i=R@M;=n.

The system (S/H) of ordinary differential equations has a solution only with constant values of the velocity,
pressure, and density, i.e., the solution of this subgroup describes an infinite and homogeneous medium.

Subgroup H;. The invariants of the operator X; are
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The system of equation (S/H) has the solution
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For the velocity of the medium we have the usual formula for relativistic addition of the velocities
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where Vy —1 is the traveling wave propagation velocity.

Subgroup Hy. The operator invariants are
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The corresponding equations (S/H) can be integrated and we have for the invariants
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Here there is no polytropic dependence between the density and pressure and, consequently, the enfropy ¢ is not
constant.
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Subgroup Hy. The invariants of the operator X; are
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The system of differential equations (S/H) has the form
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The invariant V satisfies the equation
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Specifically, for y = 4/3 the invariant V is defined by a cubic equation. The operator X can be treated as a
dilation operator.

Subgroup Hg. The invariants
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lead to the system (S/H), but their solutions cannot be found in analytic form. Here again there is no polytropic
dependence between the density and pressure.

Subgroup Hg. In this case we have a combination of two operators examined above, namely, the dilation operator
X; and the simple wave operator X3. The operator invariants
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satisfy a system (S/H) of the form
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Let us examine in more detail the solution of these equations, since here there is a polytropic dependence
between the density and pressure, which is important for applications. In order to integrate (2.11) we set

V= Ao (A, (2.12)

It is not possible to express all the invariants V, R, P directly through a known function of the variable A.
Therefore it is more convenient to represent the invariants in terms of the new variable y =@% In these variables the
integrals of (1.11) take the form
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where
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Subgroup H;. The invariants of this subgroup
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satisfy the system (S/H) of equations, which can be integrated by the same method. Setting V =A¢, y = ¢, we obtain
(2.14)
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the solution in the form
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The constants, other than the constants of integration Py, Ry, ¢, depend on the adiabatic exponenty.
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Subgroup Hy. This subgroup differs from subgroup Hg in the addition of the operator X;. The invariants
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also lead to the system (S/H), which are integrated similarly to the case of subgroups Hg and H;. The solution in

general form is
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Here all the constants depend on k andy.

Thus, with the exception of all the subgroups in which the operator X, is missing, there is no polytropic
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dependence between the density and pressure. At the present time the subgroup Hg is of the greatest interest, since
here the entropy is conserved and therefore the resulting solutions can be applied, for example, to the hydrodynamic
theory of multiple formation of particles [4—5].
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